| International Components for Unicode

StringPrep: Unicode in Network Protocols

Ram Viswanadha
Globalization Center of Competency, San José
IBM

29t Unicode Conference March, 2006 © 2006 IBM Corporation

Raghuram (Ram) Viswanadha joined the ICU team in 2000. He has worked with
projects at FedEx and Lotus in distributed learning management systems, and been
associated with Lotus LearningSpace 4. His contributions in ICU include various
character set converters, Indic transforms, StringPrep & IDNA implementation, tools
for XLIFF support and UResourceBundle. He is also actively involved in Common
Locale Data Repository (CLDR) project. He holds B.E in Electrical Engineering, M.S
in Robotics and is currently pursuing a MBA at Santa Clara University.

| International Components for Unicode

Agenda

* Problem

= StringPrep

» Profiles of StringPrep
= IDNA

= StringPrep in ICU

= Demo

29" Unicode Conference, San Francisco, CA March, 2006 © 2005 IBM Corporation

Network protocols require consistent comparison of strings. The StringPrep
framework (RFC 3454) facilitates this function. It provides sets of rules that can be
applied to strings to prepare them for use in any protocol or program. Each system
sets up a profile of StringPrep by selecting a set of rules. This presentation
describes StringPrep and important profiles such as NamePrep, NFS,
ResourcePrep, NodePrep. The usage of StringPrep and IDNA frameworks is
illustrated by implementation in International Components for Unicode (ICU).

| International Components for Unicode

Terminology

= Domain Name
* DNS: Domain Naming Service
= URL: Universal Resource Locator

= NFKC: Normalization Form KC, compatibility
composition, e.g.: ffi — ffi :The ffi_ligature
(U+FBO03) is decomposed in NFKC (whereas it is
not in NFC).

= BiDi: Bi-Directional code points

29" Unicode Conference, San Francisco, CA March, 2006 © 2005 IBM Corporation

Domain Name: The human-friendly name that maps to a numeric identifier (1P
address) of a computer.

DNS: The protocol that defines the method for mapping the domain name Internet
Protocol (IP) address.

URL: www.IBM.com

NFKC: Normalization Form Compatibility Composition (NFKC) is one of the four
normalization forms specified in UAX#15.

BiDi: Directional Property of scripts in Unicode

| International Components for Unicode

Why Internationalize?

= Users like to use their language/script in
—domain names
—-URLs
—e-mail
= Not everyone can read/write English
* How to internationalize?
—Use Unicode

29" Unicode Conference, San Francisco, CA March, 2006 © 2005 IBM Corporation

Users of the internet needed the capability of using their own language and scripts
to access resources on the internet and to communicate (e-mail) using the tools
available. Fulfilling this request is not an easy task. The internet functions on the
basis of not one but a stack of protocols each interacting with other. If the capability
of using multiple scripts needs to be added to internet then it should be added to all
layers in the stack that utilize strings to perform their functions starting at the bottom
of the stack. The underlying protocol that is essential for accessing resources on
internet and for communicating via e-mail is the Domain Naming Service (DNS)
protocol. DNS protocol defines the method for associating a name string with an
numeric Internet Protocol (IP) address.

| International Components for Unicode

Domain Name: Examples

www. H A& jp
www. N\ KR —/L3 A X.com
www.firgbolaget.nu
www.biicher.de
www.brzndendekarlighed.com
BARTH 2T .com
H—25\ A.com

29" Unicode Conference, San Francisco, CA March, 2006 © 2005 IBM Corporation

The goal is to be able to support domain names such as these.

| International Components for Unicode

Domain Name: Parts

| l

Domain Label Label Separator

29" Unicode Conference, San Francisco, CA March, 2006 © 2005 IBM Corporation

A domain name consists of one or more name parts
*Each name part can be up to 63 bytes in length
*The entire domain name can be up to 255 bytes in length

*A name part must begin and end with a letter or digit from the ASCII character set,
and may contain letters, digits, or hyphens.

*Name parts are case-insensitive, so upper-case and lower-case characters are
considered equal.

| International Components for Unicode

DNS Protocol Requirements

* Minimum impact on DNS protocol's
interoperability.

* Minimum number of changes
» Maximum backwards compatibility
» Deterministic resolution of domain names

= Single global namespace

29" Unicode Conference, San Francisco, CA March, 2006 © 2005 IBM Corporation

The DNS protocol is backbone of the internet. Adding multiple scripts capability
without due consideration to existing hardware and protocol restrictions would be
highly destructive and debilitating to the internet infrastructure. A set of
requirements were put forth by the IDN working group as noted below:

*The service designed must not damage present DNS protocol's interoperability.

*A minimum number of changes to existing protocols on all layers of the stack must
be made.

*The service must continue to allow any system anywhere to resolve any
internationalized domain name.

*The service must preserve the basic concept and facilities of domain names as
described in RFC 1034.

*The same name resolution request must generate the same response and in any
server involved in the resolution process.

| International Components for Unicode

Problems

= Unicode contains large number of
—Visually identical , e.g.: i — i
—Confusable characters, e.g.: O — 0
—Control codes, e.g.: U+0080- U+009F
—Non-Spacing, e.g.: U+00AQ
—Invisible characters, e.g.: U+200B
—Private Use Characters, e.g.: U+E000-U+FF8F
—Punctuation, e.g.: U+002E
—Symbols, e.g.: U+2097

29" Unicode Conference, San Francisco, CA March, 2006 © 2005 IBM Corporation

*Some characters are visually identical thus making it impossible to accurately
compare the strings.

*Horizontal and vertical spacing characters would not be visible, so strings that are
identical in display may not be equal.

*Non-Spacing characters are invisible, their presence does not effect display but
effect the equality operations on strings

*Control characters, formatting characters, tagging characters are also invisible but
also effect the equality operations.

*Private use characters are reserved for private use of implementers of Unicode.

These characters have no visual or semantic representation. Since the semantic

representation is implementation dependent, equality operation of the strings with
PUA code points is undefined.

*Some punctuation characters are significant in the syntax of network protocols.
*Symbols and non-name punctuation are disallowed in protocols

| International Components for Unicode

Example

www.arnaudléhors.com

www.arnaudléhors.com

29" Unicode Conference, San Francisco, CA March, 2006 © 2005 IBM Corporation

Can anyone tell the difference between the above strings?

Both strings are visually equal but when you try to compare them they are not
equal.

| International Components for Unicode

Example: Contd.

www.arnaudl\u00e9hors.com

www.arnaudle\u0307hors.com

29" Unicode Conference, San Francisco, CA March, 2006 © 2005 IBM Corporation

The first string contains e with a macron.
The second string contains e with a combining macron.

So the first step is to figure out :
«code points/sequences are legal
scode points/sequences produce consistent comparison results

10

| International Components for Unicode

StringPrep

* Defined by RFC 3454
= Framework for preparing Unicode strings
= Based on Unicode Version 3.2
= Specifies rules for handling
—un-assigned code points
—visually similar sequences

—Prohibited code points
—BiDi code points

29" Unicode Conference, San Francisco, CA March, 2006 © 2005 IBM Corporation

StringPrep, the process of preparing Unicode strings for use in network protocols is
defined in RFC 3454

(http://www.rfc-editor.org/rfc/rfc3454.txt). The RFC defines a broad framework and
rules for processing the strings.

Protocols that prescribe use of StringPrep must define a profile of StringPrep,
whose applicability is limited to the protocol. Profiles are a set of rules and data
tables which describe the how the strings should be prepared. The profiles can
choose to turn on or turn off normalization, checking for bidirectional characters.
They can also choose to add or remove mappings, unassigned and prohibited code
points from the tables provided.

StringPrep uses Unicode Version 3.2 and defines a set of tables for use by the
profiles. The profiles can chose to include or exclude tables or code points from the
tables defined by the RFC.

11

| International Components for Unicode

StringPrep Tables

= Unassigned Table

» Mapping Tables
—Case mapping

—Deletion

= Prohibited Tables

29" Unicode Conference, San Francisco, CA March, 2006 © 2005 IBM Corporation

*Unassigned Table: Contains code points that are unassigned in Unicode Version
3.2. Unassigned code points may be allowed or disallowed in the output string
depending on the application. The table in Appendix A.1 of the RFC contains the
code points.

*Mapping Tables: Code points that are commonly deleted from the output and code
points that are case mapped are included in this table. There are two mapping
tables in the Appendix namely B.1 and B.2

*Prohibited Tables: Contains code points that are prohibited from the output string.
Control codes, private use area code points, non-character code points, unmatched
surrogate code points, tagging and deprecated code points are included in this
table. There are nine mapping tables in Appendix which include the prohibited code
points namely C.1, C.2, C.3, C.4, C.5, C.6, C.7, C.8 and C.9.

12

| International Components for Unicode

StringPrep Algorithm

Map

1

2. Normalize
3. Prohibit
4

Check BiDi

29" Unicode Conference, San Francisco, CA March, 2006 © 2005 IBM Corporation

Map: For each code point in the input check if it has a mapping defined in the
mapping table, if so, replace it with the mapping in the output.

Normalize: Normalize the output of step 1 using Unicode Normalization Form
NFKC, it the option is set. Normalization algorithm must conform to UAX 15.

Prohibit: For each code point in the output of step 2 check if the code point is
present in the prohibited table, if so, fail returning an error.

Check BiDi: Check for code points with strong right-to-left directionality in the
output of step 3. If present, check if the string satisfies the rules for bidirectional
strings as specified.

13

| International Components for Unicode

Internationalized Domain Names in Applications

» Defined by RFC 3490
* Prescribes algorithm for using Unicode in DNS
= NamePrep : Profile of StringPrep for use in DNS

* Punycode : Algorithm for converting prepared
Unicode strings to ASCIl Compatible Encoding
(ACE)

29" Unicode Conference, San Francisco, CA March, 2006 © 2005 IBM Corporation

The Domain Name Service (DNS) protocol defines the procedure for matching of
ASCII strings case insensitively to the names in the lookup tables containing
mapping of IP (Internet Protocol) addresses to server names. When Unicode is
used instead of ASCII in server names then two problems arise which need to be
dealt with differently. When the server name is displayed to the user then Unicode
text should be displayed. When Unicode text is stored in lookup tables, for
compatibility with older DNS protocol and the resolver libraries, the text should be
the ASCII equivalent. The IDNA protocol, defined by RFC 3490
(http://www.rfc-editor.org/rfc/rfc3490.txt), satisfies the above requirements.

14

| International Components for Unicode

NamePrep

= Defined by RFC 3491

= Profile
. Map : Include all code point mappings specified in the
StringPrep.
. Normalize: Normalize the output of step 1 according to
NFKC.

. Pronhibit: Prohibit all code points specified as prohibited in
StringPrep except for the space (U+0020) code point from
the output of step 2.

. Check BiDi: Check for bidirectional code points and process
according to the rules specified in StringPrep.

29" Unicode Conference, San Francisco, CA March, 2006 © 2005 IBM Corporation

NamePrep is a profile of StringPrep for use in IDNA. This profile in defined in RFC
3491
(http://www.rfc-editor.org/rfc/rfc3491.txt).

The profile specifies the rules described above.

| International Components for Unicode

Punycode

» Defined by RFC 3492

= Algorithm to convert prepared Unicode Strings to
ACE

= Complete
= Unique
= Reversible

= Preserves case information

29" Unicode Conference, San Francisco, CA March, 2006 © 2005 IBM Corporation

Punycode is an encoding scheme for Unicode for use in IDNA. Punycode converts Unicode text to
unique sequence of ASCII text and back to Unicode. It is an ASCII Compatible Encoding (ACE).
Punycode is described in RFC 3492 (http://www.rfc-editor.org/rfc/rfc3492.txt).

The Punycode algorithm is a form of a general Bootstring algorithm which allows strings composed
of smaller set of code points to uniquely represent any string of code points from a larger set.
Punycode represents Unicode code points from U+0000 to U+10FFFF by using the smaller ASCII
set U+0000 to U+0007F. The algorithm can also preserve case information of the code points in the
lager set while and encoding and decoding. This casing feature, however, is not used in IDNA.

According to the RFC, a bootstring algorithm exhibits the following characteristics

*Completeness: Every extended string (sequence of arbitrary code points) can be represented by a
basic string (sequence of basic code points). Restrictions on what strings are allowed, and on length,
can be imposed by higher layers.

*Uniqueness: There is at most one basic string that represents a given extended string.
*Reversibility: Any extended string mapped to a basic string can be recovered from that basic string.
Efficient encoding: The ratio of basic string length to extended string length is small.

*Simplicity: The encoding and decoding algorithms are reasonably simple to implement.

*Readability: Basic code points appearing in the extended string are represented as themselves in
the basic string

16

| International Components for Unicode

IDNA: ToASCII

WWW . TgANT gralFTidg aieeehds . com

ToASCII

www . xn—i1baa7eci9glrd9b2ae1bjOhfcggbiyaf8o0aidigOcd . com

29" Unicode Conference, San Francisco, CA March, 2006 © 2005 IBM Corporation

ToASCII: This operation is performed on domain labels before sending the name to
a resolver and before storing the name in the DNS lookup table. The domain labels
are processed by StringPrep algorithm by using the rules specified by NamePrep
profile. The output of this step is then encoded by using Punycode and an ACE

prefix is added to denote that the text is encoded using Punycode. IDNA uses “xn--"
before the encoded label.

17

| International Components for Unicode

IDNA: ToUnicode

www . Xxn—i1baa7eci9glrd9b2ae1bjOhfcggbiyaf8o0aldigOcd . com

ToUnicode

o o Q o g
WWW . dglillgraladldgidividads . com

29" Unicode Conference, San Francisco, CA March, 2006 © 2005 IBM Corporation

ToUnicode: This operation is performed on domain labels before displaying the
names to to users. If the domain label is prefixed with the ACE prefix for IDNA, then
the label excluding the prefix is decoded using Punycode. The output of Punycode
decoder is verified by applyin g TOASCII operation and comparing the output with
the input to the ToUnicode operation.

18

| International Components for Unicode

IDNA: Details

= ASCII Full Stop(U+002E)
—ldeographic Full Stop (U+3002)
—Full Width Full Stop (U+FFOE)
—Half Width Ideographic Full Stop (U+FF61)

» Unassigned code points

= Letter-Digit-Hyphen (LDH) code points
= STD 3 ASCII Rules

29" Unicode Conference, San Francisco, CA March, 2006 © 2005 IBM Corporation

Unicode contains code points that are glyphically similar to the ASCII Full Stop
(U+002E). These code points must be treated as label separators when performing
ToASCII operation. These code points are :

Ideographic Full Stop (U+3002)
Full Width Full Stop (U+FFOE)
Half Width Ideographic Full Stop (U+FF61)

Unassigned code points in Unicode Version 3.2 as given in StringPrep tables are
treated differently depending on how the processed string is used. For query
operations, where a registrar is requested for information regarding availability of a
certain domain name, unassigned code points are allowed to be present in the
string. For storing the string in DNS lookup tables, unassigned code points are
prohibited from the input.

IDNA specifies that the ToUnicode and ToASCII have options to check for Letter-
Digit-Hyphen code points and adhere to the STD3 ASCII Rules.

IDNA specifies that domain labels are equivalent if and only if the output of TOASCII
operation on the labels match using case insensitive ASCIl comparison.

19

| International Components for Unicode

NFS Version 4 Profiles

Defined by RFC 3530

nfs4_cs_prep Profile

—Profile for file and path name strings

nfs4_cis_prep Profile

—Profile for NFS server names

nfs4_mixed_prep Profile

—profile for strings in the Access Control Entries

29" Unicode Conference, San Francisco, CA March, 2006 © 2005 IBM Corporation

Network File System Version 4 defined by RFC 3530

(http://www.rfc-editor.org/rfc/rfc3530.txt) defines use of Unicode text in the
protocol. ICU provides the requisite profiles as part of test suite and code for
processing the strings according the profiles as a part of samples.

The RFC defines three profiles :

1.

nfs4 _cs prep Profile: This profile is used for preparing file and path name
strings. Normalization of code points and checking for bidirectional code points
are turned off. Case mappings are included if the NFS implementation supports
case insensitive file and path names.

nfs4 _cis_prep Profile: This profile is used for preparing NFS server names.
Normalization of code points and checking for bidirectional code points are
turned on. This profile is equivalent to NamePrep profile.

nfs4_mixed_prep Profile: This profile is used for preparing strings in the Access
Control Entries of NFS servers. These strings consist of two parts, prefix and
suffix, separated by '@' (U+0040). The prefix is processed with case mappings
turned off and the suffix is processed with case mappings turned on.
Normalization of code points and checking for bidirectional code points are
turned on.

20

| International Components for Unicode

XMPP Profiles

= Defined by RFC 3920

= ResourcePrep

—Profile for resource identifiers within XMPP.

= NodePrep
—Profile for node identifiers within XMPP.

29" Unicode Conference, San Francisco, CA March, 2006 © 2005 IBM Corporation

Extensible Messaging and Presence Protocol (XMPP) is an XML based protocol for
near real-time extensible messaging and presence and defined by RFC 3920
(http://www.rfc-editor.org/rfc/rfc3920.txt) This protocol defines use of two
StringPrep profiles:

1. ResourcePrep Profile: This profile is used for processing the resource identifiers
within XMPP. Normalization of code points and checking of bidirectional code
points are turned on. Case mappings are excluded. The space code point
(U+0020) is excluded from the prohibited code points set. The resource identifier is
an optional tertiary identifier placed after the domain identifier and separated from the
latter by the '/' character.

2. NodePrep Profile: This profile is used for processing the node identifiers within
XMPP. Normalization of code points and checking of bidirectional code points
are turned on. Case mappings are included. All code points specified as
prohibited in StringPrep are prohibited. Additional code points are added to the
prohibited set. The node identifier is an optional secondary identifier placed before the
domain identifier and separated from the latter by the '@' character.

21

| International Components for Unicode

Other Profiles

= SASLPrep

—RFC 4013

—Profile for Usernames and passwords
= MIB Profile

—RFC 4011

—Profile for Mannagement Information Base
= i{SCSI Names

—RFC 3722

—Profile for internationalized iISCSI names

29" Unicode Conference, San Francisco, CA March, 2006 © 2005 IBM Corporation

SASLPrep: This profile is intended to be used by Simple Authentication and
Security Layer (SASL) mechanisms (such as PLAIN, CRAM-MD5, and DIGEST-
MD5), as well as other protocols exchanging simple user names and/or passwords.

MIB Profile: Managed objects are accessed via a virtual information store, termed
the Management Information Base or MIB. MIB objects are generally accessed
through the Simple Network Management Protocol (SNMP). Objects in the MIB are
defined using the mechanisms defined in the Structure of Management Information

iISCSI Name: The Internet Small Computer Systems Interface (iSCSI) protocol
provides a way for hosts to access SCSI devices over an IP network. The iSCSI
end-points, called initiators and targets, each have a globally-unique name that
must be transcribable, as well as easily compared.

22

| International Components for Unicode

StringPrep Service in ICU

Data driven

Customizable

Portable

C & Java

Procedure for producing a StringPrep profile data file
1. Run filterRFC3454.pl
2. Run gensprep
3. Open the profile

29" Unicode Conference, San Francisco, CA March, 2006 © 2005 IBM Corporation

The StringPrep service in ICU is data driven. The service is based on Open-Use-
Close pattern. A StringPrep profile is opened, the strings are processed
according to the rules specified in the profile and the profile is closed once the
profile is ready to be disposed.

Tools for filtering RFC 3454 and producing a rule file that can be compiled into a
binary format containing all the information required by the service are provided.

The procedure for producing a StringPrep profile data file are as given below:

1. Run filterRFC3454.pl Perl tool, to filter the RFC file and produce a rule file. The
text file produced can be edited by the clients to add/delete mappings or
add/delete prohibited code points.

2. Run the gensprep tool to compile the rule file into a binary format. The options to
turn on normalization of strings and checking of bidirectional code points are
passed as command line options to the tool. This tool produces a binary profile
file with the extension “spp”.

3. Open the StringPrep profile with path to the binary and name of the binary profile
file as the options to the open call. The profile data files are memory mapped
and cached for optimum performance.

23

| International Components for Unicode

Design Considerations

= StringPrep profile characteristics:
—Prescribe a fixed set of tables
—Normalization On/Off
—Check BiDi On/Off
—StringPrep algorithm fixed.

—Profiles once define are fixed.

= Performance critical

29" Unicode Conference, San Francisco, CA March, 2006 © 2005 IBM Corporation

StringPrep profiles exhibit the following characteristics:

*The profiles contain information about code points. StringPrep allows
profiles to add/delete code points or mappings.

*Options such as turning normalization and checking for bidirectional code
points on or off are the properties of the profiles

*The StringPrep algorithm is not overridden by the profile.
*Once defined, the profiles do not change.

The StringPrep profiles are used in network protocols so runtime performance is
important

Many profiles have been and are being defined, so applications should be able to
plug-in arbitrary profiles and get the desired result out of the framework.

ICU is designed for this usage by providing build-time tools for arbitrary StringPrep
profile definitions, and loading them from application-supplied data in binary form
with data structures optimized for runtime use.

24

| International Components for Unicode

UErrorCode status = U _ZERO_ERROR;

UParseError parseError;

/open the StringPrep profile */

UStringPrepProfilenameprep = usprep_open(“/usr/joe/mydata”,
“nfscsi”, &status);

if(U_FAILURE(status)){ /handle the error */ }

/prepare the string for use according

to the rules specified in the profile ~ */

int32_t retLen = usprep_prepare(src, srcLength, dest, destCapacity,
USPREP_ALLOW_UNASSIGNED,
nameprep,
&parseError,&status);

/close the profile*/

usprep_close(nameprep);

29t Unicode Conference, San Francisco, CA: March, 2006 © 2005 IBM Corporation

25

| International Components for Unicode

Java

private static final StringPrep nfscsi = null; //singleton instance
public NFSCSIStringPrep (X
try{
InputStream nfscsiFile = this.class.getResourceAsStream("nfscsi.spp");
nfscsi = new StringPrep(nfscsiFile);
nfscsiFile.close();
}catch(IOException e){
//handle the exeption
}
}
private static byte[] prepare(byte[] src, StringPrep prep) throws
StringPrepParseException, UnsupportedEncodingException{
String s = new String(src, "UTF-8");
UCharacterlterator iter = UCharacterlterator.getinstance(s);
StringBuffer out = prep.prepare(iter,StringPrep.DEFAULT);
return out.toString().getBytes("UTF-8");

29t Unicode Conference, San Francisco, CA: March, 2006 © 2005 IBM Corporation

26

| International Components for Unicode

Demo

http://www.ibm.com/software/glob
alization/icu/demo/domain

29" Unicode Conference, San Francisco, CA

March, 2006 © 2005 IBM Corporation

A web application at

http://www.ibm.com/software/globalization/icu/demo/domainillustrates the use of
IDNA API. The source code for the application is available at

http://dev.icu-project.org/cgi-bin/viewcvs.cgi/icuapps/idnbrowser/.

27

| International Components for Unicode

News article

China's Ministry of Information Industry revamps
Internet domain names system

Shanghai. Febroary 27, INTERFAX-CHIMA - China's Ministry of
Infarmation Industry (M) announced Manday it will reform the country's
Internet dormain name system, which will be enforced from March 1, 2006.
The revamp was launched in accordance with China's administrative
measures on Internet domain name system.

hE AT L%

dot china, dot com and dotnetin Chinese language part of new domain name system
revwamp

The new domain names system consists of a total of 4 Country Code Top
Level Diomains (ccTLDY including the English language domain Choand 3
Chinese-character top-level domains "HE" (China), "&31" (com)- in
China .corm is used to refer to companies, as previously only companies
could register .cn domains —the .co.cn sub domain system is not in use in
China, and "FEgE".

29t Unicode Conference, San Francisco, CA: March, 2006 © 2005 IBM Corporation

| International Components for Unicode

UTrie — BMP Access Diagram

UPPER_WIDTH LOWER_WIDTH

0
Data Array

29" Unicode Conference, San Francisco, CA March, 2006 © 2005 IBM Corporation

This kind of trie consists of an index array and a data array. The index array holds indexes of data blocks in the data array.
The upper part of the code point is used to access the index array. The result is an offset of a data block from the start of the
data table. The lower part of the code point is an offset from the start of the data block where the data for the given code
point is stored.

The number of elements in the index array is 2"UPPER_WIDTH. The size of each data block is 2"LOWER_WIDTH. The
widths of upper and lower parts can be adjusted for the best compression. A popular value is 11 bits for the upper part and 5
bits for the lower part, giving a reasonable compromise of index size versus data block size.

Access to the data corresponding to a particular code point is achieved as :
value = data[index [cp>>LOWER WIDTH]+ (cp&LOWER MASK)]]
The access time is slightly higher than the access time for arrays.

However, the main value of a single-index trie is its size when storing sparse and/or repetitive data - which is the nature of
Unicode data. The index array allows the data blocks to be anywhere in the data array. Therefore, all the blocks that are filled
with exactly the same value (for example combining class zero) will physically be represented as one single block. Also, the
blocks that overlap some of their values can overlap in the data array.

Single-index tries were almost ideal for storing Unicode data until the supplementary space was defined. However, the
introduction of supplementary code points made their usage complicated and/or infeasible. First, with the same
LOWER_WIDTH, the index array is 17 times as large. A larger LOWER_WIDTH could counter that at the expense of
compressibility. The growth of index size is problematic since most of the supplementary space is not populated, therefore
only about one fifth of the space taken by the index table carries meaningful data. Also, the index array used by ICU is 16
bits wide, which is enough for BMP data, but with supplementary characters there may be more than 64K values in the data
array.

The folded trie keeps the low access time for frequent code points, while keeping the table compact. Its design rests on two
important properties of the code point distribution in the Unicode standard. First, the BMP is densely populated, while the
supplementary space is sparsely populated. Second, in the vast majority of the processes that involve Unicode data, BMP
code points are accessed much more frequently than supplementary code points.

The folded trie structure is a single indexed trie structure. It is addressed by the UTF-16 code units. The key advantage of the
folded trie is that it encodes supplementary values using a pair of surrogate values. The value addressed by the lead
surrogate contains a new offset to the index table that is combined with the value of the trail surrogate to address the value
for that particular code point. The size gain is in the index array, as it is no longer necessary to keep around indexes for all
the unassigned supplementary code points, but only for ones that actually contain useful data.

29

| International Components for Unicode

UTrie — Supplementary Access Diagram

Lead Surrogate Same for the
Has data for surrogate block
surrogate block?

Trail Surrogate

Lead Sur ogate Data —

-- Final Data

= BMP code points access same as with single-index

29" Unicode Conference, San Francisco, CA March, 2006 © 2005 IBM Corporation

UTrie clearly separates the build and the run time stage. During the build stage,
added data is addressed by UTF-32 code points. The whole index is allocated.
During the build phase, UTrie can be queried if the data lookup is needed. After the
data entry is finished, the process of compaction and folding takes place.

Access to the data for BMP code points is the same as in single-index trie.

Access for supplementary code points is in two phases. First, the lead surrogate is
used to access the data (as in a normal single-index trie). The data for the lead
surrogate contains a flag that says that it is in fact a special piece of data (in order
to distinguish it from the first surrogates that have no data in the trail surrogate
block) and piece of data that gets combined with the lower ten bits of the trail
surrogate in order to get a new pseudo-code point that addresses the data for the
supplementary code point.

30

| International Components for Unicode

StringPrep Data Structure

Indexes

16 Bit Trie word

Mapping
Table

29" Unicode Conference, San Francisco, CA March, 2006 © 2005 IBM Corporation

StringPrep Trie :
The StringPrep tries is a 16-bit trie that contains data for the profile.
Each code point is associated with a value (trie-word) in the trie.

- structure of data words from the trie

i) A value greater than or equal to _SPREP_TYPE_THRESHOLD (0xFFFO0)
represents the type associated with the code point
if(tieWord >= _SPREP_TYPE_THRESHOLD){
type = trieWord - OxFFFO;

}
The type can be :

USPREP_UNASSIGNED

USPREP_PROHIBITED

USPREP_DELETE

ii) A value less than _SPREP_TYPE_THRESHOLD means the type is USPREP_MAP and
contains distribution described below

0 - ON : The code point is prohibited (USPREP_PROHIBITED). This is to allow for code points that are both
prohibited and mapped.
1 - ON : The value in the next 14 bits is an index into the mapping table

OFF: The value in the next 14 bits is an delta value from the code point
2..15 - Contains data as described by bit 1. If all bits are set
(value == _SPREP_MAX_INDEX_VALUE) then the type is USPREP_DELETE

Mapping Table:
The data in mapping table is sorted according to the length of the mapping sequence.
If the type of the code point is USPREP_MAP and value in trie word is an index, the index
is compared with start indexes of sequence length start to figure out the length according to
the following algorithm:
if(index >= indexes[SPREP_ONE_UCHAR_MAPPING_INDEX_START] &&
index < indexes[SPREP_TWO_UCHARS_MAPPING_INDEX_START]X
length = 1;
}else if(index >= indexes[SPREP_TWO_UCHARS_MAPPING_INDEX_START] &&
index < indexes[SPREP_THREE_UCHARS_MAPPING_INDEX_START])

lmmmtle — N

31

| International Components for Unicode

Conclusion

* Unicode can be used in Network protocols

= ASCII compatibility can be achieved

= StringPrep applicable for all network protocols

= ICU provides StringPrep services

29" Unicode Conference, San Francisco, CA March, 2006 © 2005 IBM Corporation

The StringPrep algorithm demonstrates that use of Unicode in protocols designed
for ASCII is possible without a replacing the hardware currently in use.

The StringPrep framework is applicable not only for DNS protocols but also to a
number of other protocols that need to use Unicode instead of ASCII.

ICU provides services that implement the StringPrep framework and algorithm.
Clients can implement profiles of StringPrep easily by using ICU.

32

| International Components for Unicode

References

* Moving Towards Internationalized Domain Names

—Paul E. Hoffman

= A Tangled Web: Issues of 118N, Domain Names,
and the Other Internet protocols

—RFC 2825

» Multilingual Domain Name Race
—Suzzanne Topping

29" Unicode Conference, San Francisco, CA March, 2006 © 2005 IBM Corporation

33

International Components for Unicode

29" Unicode Conference, San Francisco, CA

March, 2006

© 2005 IBM Corporation

34

